Lumotive’s New LiDAR System for Autonomous Vehicles

Lumotive Unveils High-Performance LiDAR to Enable Autonomous Vehicles

Patented Beam-Steering Technology Leverages Liquid Crystal Metasurfaces™ and Semiconductor Manufacturing to Improve LiDAR Performance, Reliability and Cost

Lumotive’s New LiDAR System for Autonomous Vehicles

Lumotive’s New LiDAR System for Autonomous Vehicles: The Beam Steering Leverages Liquid Crystal Metasurfaces™ and Semiconductor Manufacturing to Improve Performance, Reliability and Cost.

SHARE:





Seattle, WA – March 20, 2019 – Lumotive, the Bill Gates-funded startup developing LiDAR systems for autonomous vehicles, today introduced a disruptive beam-steering technology which will significantly improve the performance, reliability and cost of LiDAR systems for the emerging self-driving car industry. Initially targeting the robo-taxi market, Lumotive’s patented system uses Liquid Crystal Metasurfaces (LCM™) and silicon fabrication to achieve unmatched levels of manufacturing efficiency while simultaneously delivering unprecedented range, resolution and frame rate.

“Lumotive’s solution is ideal for automakers and Tier-1s seeking safer yet more cost-effective perception solutions for their vehicles,” said Lumotive co-founder and CEO, Dr. William Colleran. “Our LiDAR sensors benefit tremendously from the unique attributes of beam-steering LCMs which simultaneously offer large optical aperture, wide field-of-view and fast scanning while having no moving parts. LCMs deliver the combination of performance and commercial viability that will finally eliminate barriers to adoption of LiDAR for both ADAS and autonomous vehicles.”

Why LiDAR?

LiDAR has emerged as a key 3D sensing technology by enabling autonomous driving systems as well as so-called ADAS, or Advanced Driver Assistance Systems (such as systems for lane keeping, automatic braking and collision avoidance). LiDAR systems determine range by emitting laser light pulses and measuring the round-trip flight time for those pulses to travel to and reflect back from objects. A LiDAR system creates a 3D perceptual map, or “point cloud,” of its surroundings by scanning, or “beam steering,” laser pulses across its two-dimensional field-of-view, with the third dimension derived from the distance measured to an object at a given horizontal and vertical position. LiDAR has proven critical for autonomous vehicles because the technology can accurately locate objects to within a few inches at ranges of hundreds of yards. LiDAR, which stands for Light Detection and Ranging, generally exhibits shorter range but superior measurement resolution compared to its older cousin, radar, which stands for Radio Detection and Ranging.

Currently, most LiDAR systems rely on mechanical scanning, which suffers from poor reliability, cost and form factor and, most importantly, limits the performance of existing systems. In contrast, Lumotive’s revolutionary beam-steering technology uses LCMs — semiconductor chips that steer laser pulses based on the light-bending principles of metamaterials, and a first for LiDAR. Lumotive’s LCMs have large apertures to improve LiDAR perception while benefiting from the economics of semiconductor manufacturing to enable low cost systems. Initial production units will be available to select customers for beta testing in the third quarter of 2019.

Lumotive beam steering chip
Lumotive beam steering chip

Lumotive’s “Secret Sauce”

Beam steering is the missing link required for high performance and commercially viable LiDAR systems. Traditionally, LiDAR relied upon unreliable and bulky spinning assemblies, while newer breeds of LiDAR sensors utilize MEMS mirrors or optical phased arrays.

However, both of these recent approaches lack performance due to the small optical aperture of MEMS mirrors and the low efficiency of phased arrays. Lumotive’s system offers distinct performance advantages, including an unprecedented combination of:

● Large optical aperture (25 x 25 mm) which delivers long range

● 120-degree field-of-view with high angular resolution

● Fast random-access beam steering

“Lumotive’s beam-steering technology is the culmination of years of fundamental research into controlling electromagnetic waves using artificially structured metasurfaces,” said David R. Smith, the James B. Duke Distinguished Professor of Electrical and Computer Engineering at Duke University and a pioneer in metamaterials research. “In the past, these concepts have been applied to radio waves, but Lumotive is the first to develop dynamically tunable metamaterials for optics. Their development is a tremendous advance in metamaterials research, as well as a breakthrough technology that addresses pressing and unmet needs in LiDAR and other optical systems.”

Lumotive’s LCM chips contain no moving parts and are fabricated using mature semiconductor manufacturing along with liquid crystal display packaging to enable a commercially viable LiDAR system with low cost, high reliability and small size. In addition to cost and performance advantages, Lumotive LCMs can be integrated into small form-factor systems, appealing for other applications in industrial and consumer sectors which can benefit from LiDAR.

“The LCM chip is the holy grail of LiDAR, finally enabling beam steering using a semiconductor chip but efficiently and over a large optical aperture that’s hundreds of times larger than a MEMS mirror or an optical phased array,” said Lumotive co-founder and CTO, Dr. Gleb Akselrod. “Our large aperture is like having a bigger telescope, allowing us to see dramatically farther than other systems.”

Market Opportunity

Although LiDAR systems will be broadly deployed to enhance perception in diverse markets, including for robots, drones and industrial automation, most observers see LiDAR’s largest near-term application in automotive markets where the technology will enable ADAS as well as fully autonomous driving systems that will first be deployed by self-driving taxi services, commonly called robo-taxis, like those under development by Argo AI, Aurora, May Mobility, Uber and Google’s Waymo subsidiary.

“The LiDAR markets dedicated to Advanced Driver Assistance Systems (ADAS) and robotic car applications are showing significant growth between 2018 and 2024, from US$721 million to US$6.3 billion,” said Alexis Debray, PhD., Technology & Market Analyst at Yole Développement (Yole), the market research and strategy consulting company. “At Yole, we estimate the CAGR will reach almost 45% during this period. We expect strong growth of LiDAR within the transportation segment for both robotic vehicles and ADAS applications.(1) A Gates-funded startup like Lumotive, with unique metamaterials-based technology, is well-positioned to serve this growing market.”

(1) Source: LiDARs for Automotive and Industrial Applications report, Yole Développement, 2018 

About Lumotive www.lumotive.com.

Founded in 2018 with funding from Microsoft founder, Bill Gates, Lumotive is a Seattle-based startup company developing high-performance LiDAR systems for autonomous vehicles. The company’s LiDAR solutions leverage revolutionary beam-steering technology based on patented Liquid Crystal Metasurfaces™ to deliver an unprecedented combination of high performance (as measured by range, resolution, and frame rate) and readiness for mass adoption (measured by cost, reliability, and size). Lumotive’s beam-steering chips enable this unique combination because they are optically large, enabling high performance, and manufactured with mature semiconductor processes, enabling low cost and high reliability. Lumotive will sample its first LiDAR systems in the third quarter of 2019.

Microsoft
Development Category (English)728x90